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The method of characteristics is used to calculate the flow ahead of an impulsively 
started piston moving at constant velocity. Particular attention is paid to the 
development of weak shock waves which are either fully or partly dispersed at 
very large distances from the piston. It is found that the global features of the 
flows may be represented in similarity form, and the graphs obtained allow 
extrapolation to very weak waves. 

1. Introduction 
The flows described in this paper are the one-dimensional unsteady analogues 

of the two-dimensional steady flows discussed in the preceding paper by Hornby 
& Johannesen (1975). The two projects were carried out simultaneously and 
although some descriptions are necessarily similar to those of Hornby & 
Johannesen, it is intended that the reports be complementary as far as certain 
details are concerned. 

When an impulsively started piston moves into an inviscid relaxing gas which 
is initially at rest and in equilibrium the gas is set in motion by a shock wave 
which moves ahead of the piston. A schematic diagram of the flow in the x, t plane 
is shown in figure 1.  The passage of the shock wave creates non-equilibrium 
thermodynamic states within the gas and equilibrium is achieved by relaxation 
of the various energy modes of the gas molecules. The relaxation processes 
modify the structure of the shock wave as it progresses and eventually the shock 
wave attains a stable structure moving at  constant velocity. In  this paper the 
particular non-equilibrium phenomenon of interest is vibrational relaxation of 
a pure gas, but the qualitative features of these flows are typical of similar flows 
in gases exhibiting @her types of relaxation. The rotational and translational 
energy modes are assumed to be in local equilibrium throughout. Viscosity and 
heat conduction are neglected. 

The gas at  the piston surface attains the piston velocity instantaneously, being 
accelerated by a frozen shock across which the vibrational energy remains 
unchanged. The frozen shock may be considered to be a mathematical dis- 
continuity. Behind the frozen shock a state of non-equilibrium exists. The 
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FIGURE 1. Schematic diagram of the flow ahead of an impulsively started piston leading 
to a fully dispersed shock wave at Tnfinity, i.e. x, t -+ co. 

subsequent vibrational relaxation causes the frozen shock to decay, and a relaxa- 
tion region develops behind it. The gas is accelerated to the piston speed through 
the weakened frozen shock and the relaxation region. Eventually equilibrium 
conditions are achieved at the piston and the region of non-equilibrium is localized 
behind the frozen shock. The shock wave (frozen shock and relaxation region) 
finally acquires the thermodynamic structure of a steady wave moving at con- 
stant velocity with strength sufficient to accelerate the gas to the piston velocity. 
In  a co-ordinate system Exed in this wave the Aow is steady and the structure of 
such waves has been discussed in detail in the literature, notably by Lighthill 
(1956). Knowledge of the final wave structure allows a detailed check on the 
accuracy of any method used to calculate the entire flow. The final wave structure 
in the unsteady problem under investigation occurs at. infinity in both the 
distance and time co-ordinates and will be referred to as the wave at infinity. 
This wave may be fully or partly dispersed depending on the speed of the piston 
and on the vibrational specific-heat contribution to the undisturbed gas. The 
actual line in the x, t diagram along which the wave at  infinity lies is not known 
apriori. For a fully dispersed wave the frozen shock decays to zero strength. Of 
particular interest are the length scales over which the shock wave must travel 
as it develops its final structure, and we concentrate on the development of fully 
dispersed and weak, partly dispersed waves. 

There are various analytical approaches to the problem in the literature. The 
linearized theory of wave propagation in a relaxing gas has been given, for 
example, by Clarke (1960), Moore & Gibson (1960) and Lick (1967). The linearized 
expression for the decay distance of the frozen shock is given in the appendix and 
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used later to normalize the numerical results. Nonlinear theories have been 
developed by Blythe (1969) and Ockendon & Spence (1969). Both papers present 
analytic results based on approximations involving small vibrational specific 
heat and/or small or even smaller piston speed (both suitably non-dimensional- 
ized). One of the difficulties in interpreting their results is that it is not clear how 
large a particular small quantity may be before the various approximations 
cease to be valid. Ockendon 85 Spence restricted their considerations to a piston 
having finite acceleration, introducing a second length scale into the problem 
but avoiding the appearance of a frozen shock. Blythe obtained a similarity 
solution in functional form for the present problem with small piston speed and 
small vibrational specific heat. In  the present paper no analytical approxima- 
tions are made and the equations are solved using the method of characteristics. 

It has been established by Hodgson & Johannesen (1971) that vibrational 
relaxation of the constituents of the atmosphere may be responsible for the 
dispersion of sonic-bang shock waves. The development of the wave is of critical 
significance in determining the extent to which the steady wave profile is valid. 

2. Calculation procedure 
The calculations are based on a characteristic network, step-by-step procedure 

combined with the shock relations for the frozen shbck. Using the heat-transfer 
analogy explained by Johannesen, Bird & Zienkiewicz (1967), in which the flow 
is treated as if it were an ideal-gas flow with heat extraction equal to the increase 
in vibrational energy, formulation of the equations is straightforward. 

The non-dimensionalization is similar to that given by Hornby & Johannesen. 
A prime indicates dimensional quantities and all unprimed variables are non- 
dimensional : p' = pLp,  p' = pkp, T' = TL T ,  ( 1 1 4 3 )  

(u', a') = (R'TL)B (u,, a ) ,  (4) 

(cky &b, 8') = R'(cp7 Cvib, s)7 (5) 

cr' = R'TLq, CD' = CD& 0, (6), (7) 

A suffix co denotes conditions in the undisturbed gas ahead of the wave. p',  p' and 
T' are the pressure, density and translational temperature, u' is the velocity, 
a' the frozen speed of sound, R' the gas constant, c$ the frozen specific heat at 
constant pressure, c&, the vibrational specific heat, s' the entropy, (T' the vibra- 
tional energy, CD' the relaxation frequency, x' t,he distance and t' the time 
measured from the start of the motion of the piston. 

CD is defined by the well-known relaxation equation 

Dr/Dt = pCD(Cr - (T), (10) 

where 5 is the local equilibrium value of the vibrational energy and a function 
of temperature only. The characteristics equations describing the flow are 

dxldt = u +a (11) 
9-2 
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for the C+ characteristics, along which 
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dp +pa du = - (y  - l)pQD(F - u) dt, 

dxldt = u - a 

for the C- characteristics, along which 

dp-padu = - ( y -  1)p2@((T-u)dt ,  

and dxldt = u 
for the particle paths, along which 

d p - a 2 d p  = - ( y - l ) p 2 @ ( 5 - u ) d t ,  (16) 

where y is the ratio of the principal specific heats. Throughout the flow the 
thermal equation of state is valid, i.e. 

p =pT. (17) 

Equations (11)-(17) were used to calculate the flow. 
There are two boundary conditions: (i) at the piston u = up, the velocity of 

the piston, and (ii) the conditions immediately behind the frozen shock are 
matched to those of the undisturbed gas by the frozen shock relations. At the 
origin the flow velocity behind the frozen shock i s  equal to the piston velocity, 
so that the frozen shock is known there. 

To proceed with the numerical calculation we require the functional relation- 
ships 5 = 3(T) and @ = @(T). Since we are interested in flows which have small 
temperature variations it has been assumed that 

(18) 

@ = 1.  (19) 

It is straightforward to include the actual temperature dependences for a par- 
ticular gas. For the flows considered the effect of doing this would be small and 
the results would be more difficult to apply generally. 

Each flow is then determined by three parameters: the frozen specific-heat 
ratio y, the vibrational specific heat Cvib and the piston speed up. Twenty-one 
flows were calculated using y = % and Cvib = 0.5, 1 and 2 with up < 0.14. 

The network was based on the C+ and C- characteristics with interpolation 
along the particle paths through each network point. The flow was calculated in 
thi? x, t plane and retains the advantages of easy physical interpretation. The 
network was built up in a series of layers by starting each layer at the piston and 
proceeding along the C+ characteristic to the frozen shock. Within each network 
element the usual methods of iteration, discussed by Sedney (1970), were 
employed for higher accuracy. When the frozen shock was reached at  the end of 
each layer its strength was determined by applying the differential frozen shock 
relations along the shock path from the last point of the preceding layer. 

The form of the relaxation equation (10) indicates that equilibrium is 
approached asymptotically as t- tco, and in the flows considered the largest 

- 
= a , + C y i b ( T - I ) ,  

where Cvib is a constant for a particular flow, and that 
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departure from equilibrium occurs at the origin, where the frozen shock is 
strongest. It follows that if steps corresponding to constant time intervals along 
the piston path are taken to define each new layer of the network (this would be 
the usual approach) the greatest errors occur in the first layer, which is in fact 
a single triangle. Further, a prohibitively large number of steps is subsequently 
required to obtain details of the flow in the far field. An alternative is to increase 
the step size along the piston path as the calculation proceeds. The relaxation 
equation provides a clue as to how this should be done. The interval between 
adjacent Cf characteristics at the piston was chosen such that the same change 
in CT occurred between them. The step size measured in terms of time increased 
along the piston path, with smaller steps occurring where the thermodynamic 
gradients were large. It was thus possible to progress much further into the flow 
with greater efficiency. However, the step size cannot be increased indefinitely 
as the details of the developing wave structure would eventually become 
embedded in a single layer of the network. To avoid this, steps corresponding to 
constant time intervals were used when the gas at  the piston was getting close to 
equilibrium. The magnitude of the ‘constant-t’ steps was made equal to that of 
the last of the ‘constant-(T’ steps, and the detailed structure of the wave was 
obtained. 

For flows which lead to a wave a t  infinity which is fully dispersed the frozen 
shock decays to zero strength before the calculation is complete. In practice the 
shock strength became negative, and the shock was then replaced by a C+ 
characteristic in the undisturbed gas ahead of the wave. This procedure was no 
less accurate than any other network point calculation. A running check, sug- 
gested by Zhukov (1960), was made on the results by integrating the continuity, 
momentum and energy equations from the origin along the piston and C+ 
characteristics to the frozen shock. Such integration is almost certainly in greater 
error than the characteristics calculations themselves, but nevertheless the 
equations were found to be satisfied to within one part in lo4 per unit distance 
from the origin. 

For all flows the structure of the wave at infinity is known from one- 
dimensional steady flow considerations. The structure can be obtained as profiles 
along the characteristics in the x, t plane for a wave moving into a gas at  rest, and 
the developing wave profiles can be readily compared with the independently 
calculated profile of the wave at infinity. In  practice, profiles of CT and 3-(T 
projected along C- characteristics were used since this family traverses the wave 
much more rapidly than the C+ characteristics. 

The calculation procedure is illustrated by the flow for which uplam = 0.08 
and Cyib = 2. These values lead to a fully dispersed wave at  infinity. 

For very small times the flow may be calculated analytically from the initial 
gradients, which are given in the appendix. These initial gradients are inde- 
pendent of the detailed numerical procedure used for calculating the entire flow. 

The constant-(T step size along the piston was defined in terms of a certain 
fraction of (5 - CT),,, where the suffix 0 denotes conditions behind the frozen shock 
at the origin. For early calculations different fractions were used to investigate 
the effects of varying the step size, but in the majority of the calculations the 
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FIGURE 2. Profiles of the departure from equilibrium along selected C- characteristics, 
showing how the wave profile develops towards the profile of the wave at infinity, which is 
represented by crosses. The departure from equilibrium at the piston and frozen shock is 
also indicated. 

change in a was &(a - r),,. The changeover to-constant steps was made when 
r - a at  the piston was about &(a - cr),,, and subsequent steps along the piston 
path were about ten times the initial step. 

At the piston it was found that 5 - v approached zero indistinguishably from 
an exponential function of time, i.e. 

- 

(3 - ( T ) ~  = (3 - a), exp ( - t / tp) ,  (20) 

where the suffix P denotes conditions a t  the piston and t p  is the characteristic 
time for the achievement of equilibrium a t  the piston. t ,  may be obtained analyti- 
cally from the initial gradients and is given by equation (A 13) in the appendix. 

The greatest departure from equilibrium occurs at the origin, and the gas a t  
the piston relaxes to equilibrium with the greatest entropy increase in the entire 
flow. At the origin the frozen shock is strongest and the entropy increase through 
it is almost identical to the entropy increase through the wave at  infinity, being 
of order us for up < 1. Using arguments similar to those of Hornby & Johannesen 
it can be shown that the entropy increase at the piston due to relaxation is of 
order u$. There is a gradual decrease of entropy with increasing distance from the 
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1 Far-field rate: 
equation (21) 
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FIGURE 3. Decay of the frozen shock represented by the departure from equilibrium 
behind it. upla, = 0.08, cVib = 2 and y = f .  0, steps: x ~ & steps; A, 6 5  steps. 

piston and the thickness of the ‘entropy layer’ is of the same order as the 
development distance of the wave. 

Of greater interest are the decay of the frozen shock and the evolution of the 
wave towards its structure at infinity. For the example, the development of the 
wave is illustrated in figure 2,  where iS - (+ is plotted against x along selected 
C- characteristics. The decay of the frozen shock is indicated and it was replaced 
by a C+ characteristic at x = 68.0. The calculation was continued until the 
developing iS - (+ profile was almost indistinguishable from the profile at  infinity. 

The two main features of the evolution of the wave are the decay of the frozen 
shock and the development of the wave structure. Both are analysed further by 
considering the local departure I’ = iS-a from equilibrium. The frozen shock 
decay is represented by plotting 

( F a  - r a m ) / ( r o  - r a m  1 
against x,  where the suffix a denotes conditions behind the frozen shock and the 
su6x 00 the conditions in the wave at  infinity. If the wave at infinity is fully 
dispersed, ap in the example, then ram = 0. The shock wave development is 
represented by plotting 

( r m a x  - r m a x m ) / ( r O  - rmax,) 

against x, where rmax is the maximum departure from equilibrium along a C- 
characteristic and I’max, is the maximum departure from equilibrium in the 
wave at  infinity. Initially r m a x  coincides with Fa but as the frozen shock decays 
rmax occurs some distance behind the frozen shock (see figure 2). For large values 
of up, rmax and I‘, coincide throughout the evolution of the wave. 
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FIGURE 4. Shock wave development for profiles along C-  characteristics. upla, = 0.08, 
cVib = 2 and y = 9. 0, 5% steps; x , & steps. 

The frozen shock decay is illustrated in figure 3. The results show that, for the 
three different step sizes used, there is no difference between the decay curves 
until the strength of the frozen shock is less than about 10 % of its initial value. 
However, after that the largest step size indicates the most rapid decay. Since 
the calculations for the smallest step size are expected to be most accurate, the 
indications are that the decay of the frozen shock at large distances can be 
represented by the equation 

ru/ro = A exp ( - x/xu) ,  (21) 

which is a straight line on the logarithmic plot of figure 3. Here A is the value of 
Fu/F0 obtained by extending the line on figure 3 to the intersection with ~t' = 0, 
and xu is the far-field decay distance for the frozen shock. The near field may be 
represented by the initial gradient given by equation (A 8) in the appendix. The 
initial decay rate is always greater than the far-field decay rate and there is 
a gradual change in the local decay rate between the two extremes. 

The shock wave development is illustrated in figure 4. Again there are two 
characteristic rates of development in the near and far fields. The results for the 
larger step size indicate a more rapid development in the far field but those for 
the smaller step size are expected to be more accurate. The far-field wave develop- 
ment may be represented by the equation 

, 

( r m a x  - r m a x m ) / ( r o  - rmax,) = B exp ( - x/xp), (22) 

where B is the value of ( r m a x  - rmaXm)/( Po - rmax,) obtained by extending the 
straight line on figure 4 to x = 0, and x8 is the far-field shock wave development 
distance. The near field is represented by the initial gradient, calculated using 
results obtained in the appendix and the equations defining the wave at  infinity. 
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In  the general calculations (21) and (22) were the tangents to the curves of 
figures 3 and 4 obtained using constant-cr steps of &(a-cr)O at the point of 
maximum slope. Graphs of this type were plotted for all flows calculated and 
further reduction of the results was based on a study of the four constants x,, A ,  
xg and B. 

3. Comparison of the properties of various flows 
The results described in $2  were obtained for gases with Cvib = 0.5, I and 2 and 

piston speeds in the range 0.02 < up < 0.14. En all cases considered the near-field 
flow was adequately described by the initial gradients given in the appendix. The 
gas properties at  the piston were also described by the initial gradients since the 
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FIGURE 5. Normalized plots of (a)  the far-field frozen shock decay distance, (b) the value 
of A defined by (21), (c) the far-field shock wave development distance and ( d )  the value 
of B defined by (22). 



Weak wuves in a z1ibrutionally relaxing gas 139 

departure from equilibrium a t  the piston approached zero exponentially with 
time according to (20). The far-field behaviour of the flow concerns the frozen 
shock decay, which is characterized by xu and A ,  and the shock wave develop- 
ment, characterized by xF and B. These four quantities were plotted against up 
for various values of Cvib. The form of the graphs indicated that, with suitable 
normalization, a universal curve might exist for each quantjity. 

If the piston speed up was normalized by u;, the piston speed which leads to 
the strongest possible fully dispersed wave a t  infinity, the values of A and B 
collapsed onto single curves. If, in addition, the values of xu and xj were normal- 
ized by xal, the frozen shock decay distance for infinitely small piston speed, they 
also collapsed onto single curves. xal is usually derived from the linearized 
equations of motion but a simple derivation from the initial gradients is included 
in the appendix, with the result given by equation (A 14). 

For the far-field frozen shock decay xa/xul and A are plotted against up/u: in 
figures 5 ( a )  and (b) .  The scatter on these graphs is within the computational 
accuracy. As up-+ 0, xu-+xal, indicating that the results are consistent with 
linearized theory. For up = u:, the far-field frozen shock decay distance has 
a maximum equal to about 3.5 times the linearized value. The physical reason 
for the maximum is that the maximum-strength fully dispersed wave travels at 
the frozen sound speed in the undisturbed gas and the G+ characteristics from the 
piston travel at the local frozen sound speed. At the front of a maximum-strength 
fully dispersed wave the C+ characteristics become asymptotically coincident 
with the front of the wave, and information propagated from the piston takes a 
long time to reach the wave front. These results for up = u; are also the most 
difficult to calculate, since the characteristic netw-ork elements near the wave 
front become elongated in the direction of the wave, and they probably contain 
the greatest computational errors. 

For the far-field shock wave development x8/xal and B are plotted in figures 
5 (c) and (d). The graphs indicate the same trends as figures 6 (c )  and (d) in the 
previous paper by Hornby & Johannesen. The far-field wave development 
distance may be determined from the empirical equation 

XI/Xal = 2*0(up/u;)-1'6 (33)  

and the development distances are greatest for small piston speeds. Since the 
width of the wave at infinity is inversely proportional to  its strength, the G+ 
characteristics require a longer time to traverse the developing wave if it  is weak. 
This statement is not inconsistent with the above comments concerning the 
frozen shock, since for weak fully dispersed waves at  infinity the frozen shock 
decays to zero strength long before the developing wave attains a structure 
remotely similar to that of the wave a t  infinity. From figure 5 ( c )  the value of the 
empirical parameter B is given by 

B = 0*27uP/u$. (34) 

The numerical values are based on the results of both investigations. 

curve-fitting techniques. 
The plotted points of figures 5 ( a )  and ( b )  do not lend themselves to simple 
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4. Conclusions 
The results presented indicate that the flow near the origin of the motion of an 

impulsively started piston can be well represented by the thermodynamic 
gradients at the origin. Further, the departure from equilibrium at the piston 
approaches zero exponentially at a rate defined by the initial gradient of 5 - (T. 

The far-field wave evolution can be grossly represented in terms of four 
universal curves which describe the frozen shock decay and shock wave develop- 
ment. Linking the piston speed to the properties of the undisturbed gas, via the 
piston speed which leads to a maximum-strength fully dispersed wave at  infinity, 
allows flows for all possible combinations of piston speed and vibrational specific 
heat to be predicted. 

To obtain the numerical solutions the characteristics network was built up in 
a systematic manner with small step sizes in the x, t plane occurring in the region 
of the flow where the thermodynamic gradients were largest. This permitted the 
flow to be efficiently evaluated a t  large distances and times. 

A similarity solution for the flow ahead of an impulsively started piston was 
obtained by Blythe for Cyib < 1 and up < 1. His solution, which is in functional 
form only, is compatible with the similarity of the characteristics results, for 
which Cvib = 0.5, 1 or 2. The characteristics solutions are in a form which may be 
readily used to determine the gross features of all flows of this type. The graphs 
plotted in figure 5 are identical, to within the computational error, to those 
plotted in figure 6 of the previous paper by Hornby & Johannesen. It is thus 
apparent that, not only is there similarity within each type of flow, but there is 
also similarity between the two types. The normalizations of the piston speed and 
wedge angle were the same in both cases, based on the values leading to a 
maximum-strength fully dispersed shock wave at  infinity. The normalizations 
of the decay and development distances were also the same in both cases, pro- 
vided that the distances for decay and development in the two-dimensional 
steady flow were measured from the wedge to the wave in a direction normal to 
the wave. In  the acoustically linearized limit this is accounted for by the factor 
M,/(M% - 1)4, which transforms y into the distance normal to the wave. 

In  spite of the fact that in all cases the piston speed and wave angle were not 
large, it  does not appear that this is the usual form of the analogy between one- 
dimensional unsteady and two-dimensional steady flows. Rather, it  is the analogy 
between one-dimensional unsteady and two-dimensional unsteady flows since 
y(Mi - 1)4/Mm is the distance the wave has travelled since its creation at  the 
tip of the wedge. Thus the lifetime of the wave as it moves into the gas ahead of 
it is the criterion which determines its structure. 

A similarity solution for the two-dimensional steady flow past a wedge was 
also obtained by Blythe for Cvib < 1 and 0, < 1. His solution indicates the same 
type of similarity as that obtained by Hornby & Johannesen. 

The results obtained by the method of characteristics show that the frozen 
shock decay distance differs substantially from that obtained from linearized 
theory. Blythe’s analysis for constant piston speed/wedge angle is able to predict 
only the linearized frozen shock decay distance in the near field. Presumably 
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FIGURE 6. Elementary network for obtaining the initial gradients. 

this is because, in the limit of small piston speed or wedge angle, the nonlinear 
effects of the frozen shock are insignificant when compared with those deter- 
mining the structure of the developing wave. 

The characteristics results presented in our two papers give solutions of the 
exact equations for the flows and are in a form suitable for immediate application 
to all flows of these types. 

We wish to thank Professor N. H. Johannesen and Dr R. P Kornby for many 
valuable discussions. One of us (C. G. D.) was in receipt of a studentship from the 
Science Research Council. 

Appendix. Calculation of the initial gradients 
The initial thermodynamic gradients in the flow ahead of an impulsively 

started piston moving. at constant velocity are most easily derived by considering 
a C+ characteristic and a line at  constant time in the x, t diagram as shown in 
figure 6. The line 1-2 is a C+ characteristic, along which (12) holds: 

where the suffix 0 indicates conditions behind the shock at  the origin. Since the 
pistori velocity is constant, the momentum equation along 3-2 reduces to 
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where 

Assuming that the pressure varies linearly at the piston gives 

(Pa -Po)/t3 = (Pl -PO)/tl. 

The geometry of figure 6 indicates that 

and 

where us,, and up are the velocities of the shock and piston, respectively. 

defining the geometry then lead to the initial gradients, e.g. 
Equations (A 1)-(A 4) may be solved for p, ,  p 2 ,  p 3  and u2. The equations 

and 

where the suffix S denotes conditions behind the frozen shock and the suffix P 
denotes conditions a t  the piston. The initial gradients of all other thermodynamic 
quantities follow. In  particular, the departure r, from equilibrium behind the 
frozen shock has an initial gradient given by 

where 

The initial decay rate of the frozen shock represented in figure 3 is therefore 
given by 

-log - = - - - -  1 - '%ib(y- 1)2p;[(yf (Pi $. l )  + 2 ( Y -  l)Pol 

] HY+ l )PO+ (7- 1)12 
P o 4  

(us0 - U P )  (~Pldu)u=,, 
[fx (31 0 Xao Us0 [ I+  

(A 8)  

if Po, is assumed to behave exponentially near the origin. For partly dispersed 
waves at infinity raw must also be calculated to find the corresponding initial 
decay rate. 

To obtain the initial shock wave development rate shown in figure 4 we require 



Weak waves in a vibrationally relaxing gas 143 

Near the origin rmax = I?, and Fmax is obtained from the structure of the final 
wave a t  infinity. In  fact the only difference between xao and xpo is due to the 
different aspects of the final wave which need to be considered. 

At the piston the initial gradient of PP = ap - up accurately determines the 
exponential approach to thermodynamic equilibrium. The characteristic time 
scale for this approach is t p  = tPo, where 

Now 

and along a particle path, using (17) and (18), 

dT y - l d p  Y-1 _ -  --_-- 
T y p yT 'CT' 

Hence 

along the piston path. At the origin 

Using (A 12) and (A B), (A 11) becomes 

i.e. 

-11, [$ log (%)I = -g 1 = { 1 + Cvib [ 1 + Y-1 
P o 4  

(us0 -up) ( ~ P l d U ) u = ,  
1-f- 

(A 13) 

which gives the characteristic time for approach to equilibrium along the piston 
path. 

I n  the acoustic limit of small piston velocity (up < I), the right-hand sides of 
(A 8) and (A 13) become independent of up. As up -+ 0, p,,, po -+ 1, ao, uBo -+ ya and 
(dpldu), --f yh. Hence 

and 

xd is used to normalize the decay and development distances x, and xp which we 
obtained from the full characteristics results. 
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